Cross-lingual Discourse Relation Analysis: A corpus study and a semi-supervised classification system

نویسندگان

  • Junyi Jessy Li
  • Marine Carpuat
  • Ani Nenkova
چکیده

We present a cross-lingual discourse relation analysis based on a parallel corpus with discourse information available only for one language. First, we conduct a corpus study to explore differences in discourse organization between Chinese and English, including differences in information packaging, implicit/explicit discourse expression divergence, and discourse connective ambiguities. Second, we introduce a novel approach to learning to recognize discourse relations, using the parallel corpus instead of discourse annotation in the language of interest. Our resulting semi-supervised system reaches state-of-art performance on the task of discourse relation detection, and outperforms a supervised system on discourse relation classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Discourse Relation Classification with Structural Learning

The corpora available for training discourse relation classifiers are annotated using a general set of discourse relations. However, for certain applications, custom discourse relations are required. Creating a new annotated corpus with a new relation taxonomy is a timeconsuming and costly process. We address this problem by proposing a semi-supervised approach to discourse relation classificat...

متن کامل

A Semi-Supervised Approach to Improve Classification of Infrequent Discourse Relations Using Feature Vector Extension

Several recent discourse parsers have employed fully-supervised machine learning approaches. These methods require human annotators to beforehand create an extensive training corpus, which is a time-consuming and costly process. On the other hand, unlabeled data is abundant and cheap to collect. In this paper, we propose a novel semi-supervised method for discourse relation classification based...

متن کامل

شناسائی رابطه تقابل در گفتمان فارسی به کمک روش های یادگیری باسرپرستی

Discourse is a part of language that intend is used to communicate. A discourse relation recognition system can identify one or more relation between the textual units in a discourse. Like other languages, Contrast relation is a one of the available relations in Persian discourse. Contrast relation recognition in discourse is useful for generation and perception of discourse, paraphrasing and ...

متن کامل

Towards Semi-Supervised Classification of Discourse Relations using Feature Correlations

Two of the main corpora available for training discourse relation classifiers are the RST Discourse Treebank (RST-DT) and the Penn Discourse Treebank (PDTB), which are both based on the Wall Street Journal corpus. Most recent work using discourse relation classifiers have employed fully-supervised methods on these corpora. However, certain discourse relations have little labeled data, causing l...

متن کامل

Semi-Supervised Representation Learning for Cross-Lingual Text Classification

Cross-lingual adaptation aims to learn a prediction model in a label-scarce target language by exploiting labeled data from a labelrich source language. An effective crosslingual adaptation system can substantially reduce the manual annotation effort required in many natural language processing tasks. In this paper, we propose a new cross-lingual adaptation approach for document classification ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014